Random Survival Forests

نویسندگان

  • HEMANT ISHWARAN
  • UDAYA B. KOGALUR
  • EUGENE H. BLACKSTONE
  • MICHAEL S. LAUER
  • M. S. LAUER
چکیده

We introduce random survival forests, a random forests method for the analysis of right-censored survival data. New survival splitting rules for growing survival trees are introduced, as is a new missing data algorithm for imputing missing data. A conservation-of-events principle for survival forests is introduced and used to define ensemble mortality, a simple interpretable measure of mortality that can be used as a predicted outcome. Several illustrative examples are given, including a case study of the prognostic implications of body mass for individuals with coronary artery disease. Computations for all examples were implemented using the freely available R-software package, randomSurvivalForest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Random Survival Forests for Competing Risks and Regression Models in Determining Mortality Risk Factors in Breast Cancer Patients in Mahdieh Center, Hamedan, Iran

Introduction: Breast cancer is one of the most common cancers among women worldwide. Patients with cancer may die due to disease progression or other types of events. These different event types are called competing risks. This study aimed to determine the factors affecting the survival of patients with breast cancer using three different approaches: cause-specific hazards regression, subdistri...

متن کامل

Comparison of Survival Forests in Analyzing First Birth Interval

Background and objectives: Application of statistical machine learning methods such as ensemble based approaches in survival analysis has been received considerable interest over the past decades in time-to-event data sets. One of these practical methods is survival forests which have been developed in a variety of contexts due to their high precision, non-parametric and non-linear nature. This...

متن کامل

Random Survival Forests 1

We introduce random survival forests, a random forests method for the analysis of right-censored survival data. New survival splitting rules for growing survival trees are introduced, as is a new missing data algorithm for imputing missing data. A conservation-of-events principle for survival forests is introduced and used to define ensemble mortality, a simple interpretable measure of mortalit...

متن کامل

Random forests for survival analysis using maximally selected rank statistics

The most popular approach for analyzing survival data is the Cox regression model. The Cox model may, however, be misspecified, and its proportionality assumption is not always fulfilled. An alternative approach is random forests for survival outcomes. The standard split criterion for random survival forests is the log-rank test statistics, which favors splitting variables with many possible sp...

متن کامل

Pathway analysis using random forests with bivariate node-split for survival outcomes

MOTIVATION There is great interest in pathway-based methods for genomics data analysis in the research community. Although machine learning methods, such as random forests, have been developed to correlate survival outcomes with a set of genes, no study has assessed the abilities of these methods in incorporating pathway information for analyzing microarray data. In general, genes that are iden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008